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Abstract 

Mechanotaxis is the directed migration of a cell due to forces it senses from the substrate, which are caused mainly 
by the presence of other cells or by external traction forces. The resulting cell movement plays important biological 
roles for example in wound healing, the functions of the immune system, organogenesis and metastatic diseases. We 
present a model to simulate collective cell migration based on the forces that cells exert on elastic substrata. It charac-
terizes the influence of cell and substrate stiffness on the collective migration of cells. The simulations initially repre-
sent a two-dimensional (monolayer) problem, and are then extended to represent migration in a three-dimensional 
extracellular matrix. The model is generic and can be utilized to study a variety of biological processes where migra-
tion occurs including tissue repair, cancer and infiltration of white blood cells to an infection site.
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Background
The ability to move is an essential feature of living cells, 
without which many biological processes could not 
occur, including organ development and growth, wound 
healing and the normal immune response to infection. 
In the context of disease, understanding the migration 
behavior of cells is particularly important in the cascade 
leading to the formation of cancer metastases. Some of 
the key mechanisms that stimulate cell migration are 
chemotaxis (movement along a gradient of a soluble che-
moattractant), haptotaxis (directional movement along a 
gradient of ECM-bound chemoattractants) and mecha-
notaxis [cell mobility triggered by mechanical cues such 
as substrate stiffness gradients (durotaxis), or migration 
towards a mechanically strained area (tensotaxis)].

Tensotaxis occurs when a cell responds to signals resulting 
from mechanical strains induced in its substrate or changes 
in the substrate stiffness [1]. To understand cell migration 
as an outcome of mechanotaxis, and in particular regarding 

the behavior of multiple cells in cultures, a theory is needed 
to assess the influence of the cellular forces applied on the 
(extracellular) environment, the effects of cell proliferation 
and death, the interactions between the cells, as well as the 
elastic properties of the substrate. A mathematical frame-
work can then serve to design experiments and extract addi-
tional information from experimental work [2, 3]. A model 
makes it possible to isolate controlling parameters and fac-
tors in the experiments, and a simulation enables the testing 
of the individual contributions of the parameters and sensi-
tivity to changes in their values upon migration.

The aim of this study is to describe a novel cell migra-
tion model based on physical and analytical theories 
characterizing the connections and influences between 
a cell and its surroundings (neighboring cells and the 
extracellular environment). One of the goals is to pro-
duce a 3D model that lends itself to simulating the migra-
tion process of diverse cells and situations, thus providing 
better insights into cell communication, specifically as 
regards mechanotaxis.

Mechanotaxis
Cell movement occurs when the cell applies forces to the 
substrate (in two dimensions, 2D) or to the extracellular 
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matrix or medium (in three dimensions, 3D). These local-
ized forces can be sensed by neighboring cells [4–7] which, 
in turn, migrate in the general direction of these signals.

Individual cell movement has been likened to worm-
like crawling (Fig. 1) [1, 5, 8–10]. Cells “pinch” the sub-
strate at adhesion points and exert forces that deform 
the surrounding substrate. Cells also sense changes in 
the substrate’s mechanics, i.e., stress or stiffness, through 
the same cell-substrate physical connection sites. This 
mechanically connected network can transmit strains 
between closely situated cells, since the deformations 
decay far enough away from the cells [4, 7].

This type of communication can also cause a group 
of cells to move and migrate in a specific direction, for 
example to repair a wound as a result of wound-site 
contraction. The magnitude and transfer distance of the 
mechanical signal that takes place as cells deform their 
surroundings depend on the elastic modulus of the sub-
strate. Several studies have shown that cells will migrate 
towards a stiffer substrate when situated on a soft one, 
and will tend to move upwards on a stiffness gradient. 
Winer et  al. showed that cell stiffness can change as a 
function of the substrate stiffness [11]. The intensity of 
the mechanical signal defines the cell’s velocity and the 
overall rate of motion of the colony.

Effect of stiffness of the extracellular matrix
The extracellular matrix (ECM) is a non-cellular struc-
tural component that exists between and around the 
cells, in all tissues and organs, and contains many fibrous 
proteins and polysaccharides [12]. The composition 
of ECM is unique to each tissue and produces a differ-
ent range of elastic moduli, which define the density and 
spatial organization of the protein molecules. These long-
chained molecules provide the ECM with its elasticity 
and stiffness. The structure and mechanics of the ECM 
play a major role in cell migration, as many cells receive 
biochemical and biomechanical cues through it. It thus 
acts as a medium for cell-to-cell communication.

Ng [13], Dufort [7], and Lu [14] among others found 
that cells, especially cancerous ones, show a preference 

for a stiffer ECM. Generally, cells will tend to migrate 
towards a stiffer ECM zone, a feature that is associated 
with wounds and tumors that are much stiffer than nor-
mal tissue. Studies have reported ECM elasticity changes 
as a function of the type of cells inhabiting the substrate. 
The elasticity of the cell can be changed depending on 
the substrate type [8, 15–18] which is exploited in experi-
ments on the subject.

The cell life cycle
Another important factor in the migration process takes 
place as part of the cell life cycle. During proliferation 
or death (necrosis, anokis or apoptosis), the cells inter-
act differently with the substrate. There are indications 
of mechanical interactions of cells with the ECM dur-
ing proliferation or after cell death such as regulation of 
processes [19] or pattern forming [20]. The mechano-
taxic behavior of cancer cells is unusual in that there is a 
higher proliferation to cell-death rate and a different elas-
tic modulus. However, substrate stiffness and dimension-
ality can have opposite effects on cell spread and viability. 
These relations and effects can be explored with migra-
tion models and simulations.

Cell migration models
The present study considers cells that are migrating 
through a space as discrete objects, rather than consid-
ering cell densities treated by continuum-scale mod-
els using partial differential equations. The approach 
where cells are treated as discrete objects falls within 
the class of cell-based models. Cellular-based modeling 
approaches can be classified into two important sub-
classes: cellular-automata models, where the cell shape 
and position is represented by ‘occupying’ or ‘not occu-
pying’ certain control areas (or volumes) that are dictated 
by a discrete lattice. In this sub-class, one can find the 
cellular-Potts models by Glazier and Graner [21], Merks 
and Koolwijk [32] and van Oers et al. [33]. The work of 
Borau et al. [31] represents a 3D voxel FE model for a sin-
gle cell in a probabilistic setting, where also the interac-
tion between the migration and deformation of the cell 
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Fig. 1  Cell movement along a substrate. The cell ‘pinches’ the substrate exerting a traction force, and migrates in a worm-like type of movement
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and the deformation of the cell nucleus were also taken 
into account. In the second sub-class, which will be con-
sidered in this study, cells are allowed to move continu-
ously over a specified domain where the stiffness varies 
over the domain. This continuous cellular approach was 
developed in earlier studies by Byrne and Drasdo [34], 
Groh and Louis [35] and in Neilson et al. [36]. A review 
on particle methods applied to tumor growth and wound 
healing is given in Vermolen [37]. Various cell migration 
models with cell–cell contacts have been developed and 
focus mainly on group migration and single cell move-
ment rather than interactions between (proximal or 
distant) neighboring cells. Today’s more powerful com-
puters make it possible to run more simulations that con-
trol migration thorough various interactions, although 
most are based on 2D models [21–23]. Here by contrast, 
we model mechanical signals transmitted through the 
substrate to which the cell adheres that affect its rate of 
migration, orientation and directionality.

Several analytical models for cell mechanotaxis have 
been developed. Geris et  al. [24] described a finite ele-
ment model based on cell-to-cell spring-like interac-
tions, with a drag force caused by the medium viscosity. 
Reinhart-King et  al. [25] produced a video analysis of 
cell migration, and suggested a mean displacement coef-
ficient as a function of time, speed and direction of per-
sistence. In a model developed by Vermolen and Gefen 
[4], the cells influence one another by mechano-sensing 
traction forces arising from cell movement. During 
motion, a cell exerts a pulling force on the substrate, 
making a small deformation that a neighboring cell can 
sense and respond to by moving accordingly. Our model 
extends Vermolen and Gefen’s 2D cell migration model 
to a 3D spatial simulation. In the present approach, the 
deformation of the cell is not taken into account and all 
cells are assumed to be spherical in the 3D simulations. 
It is important to note that cell morphology and stiffness 
changes are required during migration, and especially 
in 3D migration through narrow passages, as will occur 
e.g. during cancer cell invasion, see Dvir et al. [30]. The 
likelihood of cells crossing the passage will be affected 
by the cell nucleus deformability. This aspect of motion 
will require more detailed definition of the cell structure 
and dynamics and is outside the scope of the current 
manuscript. In Borau et  al. [31], a modeling study has 
been developed for a single cell migrating and deform-
ing in 3D, and their modeling incorporated the interac-
tion with the deformation of the cell nucleus indeed. One 
can foresee that their approach can be integrated with 
ours to extend the modeling to simulate en mass migra-
tion (of cell populations) in 3D. The next section outlines 
the physical model. “Results and discussion” presents the 

simulation results for illustrative cases of cell clustering 
and cancer metastasis.

Methods
The physical model presented here is composed of an 
analytical model and an algorithm developed to perform 
the cell mechanotaxis simulations in 2D and 3D under 
conditions where the number and types of cells, the 
complex substrate and other factors vary. The analytical 
model is based on the Potts model which assumes that 
each cell interacts with its neighboring cells and the sub-
strate. To mimic physical ground truth, the model param-
eters are based on experimental results, and on stochastic 
movement.

The analytical model
Consider a mechanotaxis situation between two cells; 
i.e., a mechanical signal between the cells caused by the 
movement of one of the cells, which exerts a traction 
force on the substrate and causes the second cell to move 
towards it.

To simplify the model and calculations, the cells are 
treated as circles or spheres with radius R. In addition, 
since the deformations caused by cell movement are 
small compared to the substrate thickness, the deforma-
tions are assumed to behave like a spring.

The scalar strain energy density M was used rather than 
the traction force F, as it is easier to measure and to sum. 
The strain energy density exerted by a single cell on the 
substrate Mi

0, assuming small deformations and linear 
elasticity, can be calculated as

where Es(r) is the local elastic modulus of the substrate, 
and ε is the substrate strain beneath the cell center. The 
strain ε can be calculated as the displacement of the sub-
strate, d, over the substrate width, L, given the pulling 
force exerted by the cell (Fig. 2a),

or by using Hook’s law:

Substituting ε into the cell strain energy density results 
in

(1)M0
i = 1

2
Es(r)ε

2

(2)ε = d

L

(3)ε = 1
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A
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where Fi is the force exerted by the ith cell. We are only 
interested in forces exerted if a cell is viable and well 
adhered to the ECM, and can thus contribute to the 
mechanotaxis process.

We ignore interactions with the ECM after death or 
while proliferating, due to the very short simulation time 
interval and length of these processes.

Cell i affects its surroundings by pulling the substrate 
in its vicinity (Fig. 2). As a result, the strain energy den-
sity from the center of the cell is written as [4]:

ri is the location of cell i, �i = Es(ri)
Ei
c

 is a measure of atten-
uation of the signal, due to the cell’s own elastic modulus, 
Ei
c and the local elastic modulus Es of the substrate. This 

result is true for every point in the medium, suggesting 
that all the cells have a mechanical way to communicate 
throughout the substrate. Merkel et al. [18] demonstrated 
this exponential decay experimentally, as a function of 
the thickness of the substrate. Summing all the strain 
energy density around the ith cell yields the total strain 
energy density of cell i:

From Eq. 7 we can calculate the size of the force a cell 
can sense. To calculate the migration direction of the cell, 
we sum the strain energies from the neighboring cells 
along the line connecting the centers of the cell and its 
neighbor:

(5)Fi =
{

F̂ , if viable
0, if dead or proliferating

(6)Mi(r) = M0
i exp

{

−�i
|r − ri|

Ri

}

(7)M(ri) = M0
i +

∑
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M0
j exp

{

−�j

∣

∣ri − r j

∣

∣

Rj

}

(8)zi =
∑

j �=i

Mj(ri)
r j − ri
∣

∣r j − ri

∣

∣

Therefore the time-dependent displacement of the cell 
can be calculated as:

introducing the cell velocity vi, where ẑi is the unit vector 
of zi.

The dimension parameter, αi, is defined by the cell via-

bility and interaction with the ECM as: αi =
(

Fi
F̂

)2
βi

R3i
f ; f 

is the friction force and equals µFi. Thus αi = βi
R3i
µF̂

, or 0 

if the cell is not viable (cells do not move after death or 
negligibly while proliferating). We also define the mobil-
ity of the cell, β; i.e., its ability to move as a function of its 
own elastic modulus and the substrate’s elastic modulus.

Studies have shown [26, 27] that cell velocity exhibits 
a non-linear dependency on the elastic modulus of the 
substrate, as shown in Fig.  3. We approximate the cell 
velocity to a Gamma distribution function of the form:

By letting all other parameters but β be independent of 
the substrate elasticity, β can be modeled as the function 
β(�) = A�2e−B�, A and B are dimension parameters, and 
can be found by using experimental values of β and �.

Combining all of the above, the velocity of a single cell 
can be written as

Figure  4 shows vi(Es) Gamma-function behavior for 
different Ec values, and suggests that cells with higher 
elasticity can move more easily and with greater speed. 
Figure 4 has been plotted for the 2D and for the 3D cases, 
where in the 3D case, the cell may have to cross through 

(9)ri(t +�t)− ri(t) = �tαiM(ri)ẑi ≡ �tvi

f (x) = x2e−x.

(10)

vi = αM(ri)ẑi = ẑi
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Fig. 2  Two cells affect each other through the substrate, which acts as an elastic material with spring qualities
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narrow passages, where the stiffness of the cell nucleus 
certainly has an impact on the deformability of the cell. 
The reduction in cell migration velocity as a result of cell 
deformability can be incorporated by adjusting the cell-
friction parameter µ to a larger value.

Cell migration is semi-random and not only deter-
mined by the environment. Randomness is thus intro-
duced by defining two components of cell velocity: 
movement resulting from the cell surroundings; i.e. 
mechanotaxis, and a velocity vector randomized under 
the assumption that a cell would continue to migrate 
approximately at the same velocity with minor changes, 
which can be modeled by a normal distribution. We 
define a probability Pmp that in a certain time-frame (TF) 
the cell velocity will derive from either mechanotaxis or 
from this random walk.

A signal detection threshold must be set or the unre-
alistic situation of two very distant cells interacting will 

occur. Based on Eq.  (6), a minimal detectable signal 
(MDS) can be defined where the mechanical communi-
cation occurs. Introducing ε as the MDS yields

and setting the maximum distance between two cells 
to d = 30 µm [24] will give us a value for ε. Setting this 
value of ε as the MDS for all cells provides the maximum 
distance of the MDS—d(Es,Ec):

Reinhart-King et  al. [24] approximated d = 10
√

F
Es

 by 
analyzing two cell movements as a function of the force 
and elastic modulus of the substrate. Figure 5 compares 
Reinhart-King’s MDS distance with our model’s MDS 
distance. The main difference is the dependency of the 
MDS distance on the cell’s elastic modulus Ec (via �i). 
Changing the cell type (i.e. its elastic modulus) can be 
used to calibrate the model.

We also define collision interactions between two cells, 
where cells are not allowed to overlap when impinging. 
The effect of the contact force resulting from a two cell col-
lision is incorporated within the cell’s strain energy density. 
We define an allowed indentation between two cells due to 
collision, h, using contact mechanics [4, 28, 29] which gives 
us the strain energy density transferred in the collision:

Mij is subtracted from M(ri) to calculate the cell’s final 
velocity. A subtraction of energy from z is therefore also 
required:

r̂ is a unit vector connecting the centers of the two cells.
The final problem to address is the mechanical commu-

nication of cells situated in regions of different stiffness 
(Es). Our solution is to expand the use of Hook’s law. As 
above, two cells are connected through a spring; how-
ever, in this case the spring changes its constant, k, at the 
boundary of the ECM region (Fig. 2). An effective spring 
constant can be applied through the relation:

The relation between the elastic modulus Es and k is 
k = EsA

L0
, where A is the spring’s area (i.e. the cell contact 
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Fig. 3  Cell speed as a function of the gel stiffness (dashed), and cell 
traction or elasticity (dotted) as a function of the gel stiffness [26]. The 
simulated cells mimic this type of behavior
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area) and L0 is the length of the spring. Combining this 
with an effective elastic modulus, and assuming A is the 
same for both cells we get:

where L1 and L2 are the distance of a cell from the bound-
ary of the elastic modulus on the line connecting the two 
cell centers; hence

Simulation algorithm
To test this model, a simulation was conducted under cer-
tain assumptions to simplify calculations, running time and 
visualization. First we defined the simulation parameters, 
such as cell radius, number and locations, elastic modulus, 
traction force quantity and probability of the cells to pro-
liferate or die (see Table 1). The total strain energy density 
was calculated for each cell in every TF, thus yielding the 
cell velocities and locations in the next TF.

Probabilities of proliferating or death were calculated to 
trigger these processes. Cancerous cells were simulated 
by setting the likelihood of proliferation higher than the 
likelihood of death to generate a tumor growth model.

This simulation, by controlling each cell Ec, the size and 
traction force and the ECM elastic modulus value, makes it 
possible to examine numerous conditions and variables to 
investigate mechanotaxis-related phenomena and effects.

Results and discussion
This section reports the simulation results for situations 
such as:

(16)E
eff
s = E1

s E
2
s L0

E1
s L2 + E2

s L1

L0 = L1 + L2.

• • The two cell problem (2D).
• • Different cells with different ECM (2D + 3D).
• • Tumor growth.

Other situations can also be modeled using this simula-
tion such as wound healing, apoptosis, etc.

The two cell problem
Let us review the simple problem of two cells on the same 
ECM. Placing two cells at a distance from each other, but 
within a detection range d, will result in the cells moving 
towards each other.

Figure  6a shows the distance between the centers of 
the cells in time, for several Es values, without stochastic 
movement—only mechanotaxis (Pmp  =  0). The move-
ment is smooth, and is directly towards collision, since 
the cells “pull” each other. The stiffer the ECM, the smaller 
the strain energy density and MDS distance, until the cells 
cease to collide at all (at 20 kPa, the small variations are 
from random movements which occur under zero strain 
energy) at high Es (30 kPa); both the random velocity and 
mechanotaxis induced velocity are nearly zero.

Figure 6b depicts the same process, with the addition of 
stochastic movement, for different Pmp (Es = 10 kPa). It 
shows the time difference between cells that move mostly 
by themselves (Pmp = 0.9) and cells moving under mech-
anotaxis effects (Pmp = 0 or 0.1).

For both simulations, the starting distance was chosen 
to be 9.6 μm. A larger distance or a change in the ECM 
elastic modulus will make the signal weaker than the 
MDS and the cell will wander (solid and dashed lines in 
Fig.  6a). An analytical solution to this problem is pre-
sented in [4].

These results illustrate the basic movement in the 
model, and the conflicts between mechanotaxis versus 
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Table 1  List of parameters used in the simulation

Parameter Value Units

Es 5 kPa

Ec 0.5 kPa

F (cell force) 1 nN

d (MDS length) 30 μm

ε (MDS) 1.06 × 10−34 Pa

R (cell radius) 2 μm

p (likelihood of death) 0.05 % –

q (likelihood of split) 0.5 % –

Pmp (random var.) 50 % –

βi/μ 10/0.2 s−1

Δt (Time step) 2 s
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other types of movement (stochastic in our example) and 
between different elastic moduli of the substrate. Chang-
ing the cells type will change the cell velocities, according 
to Eq. (10).

Two cells, two substrates
Here we investigate two ECM regions with two differ-
ent types of cells as formulated in Eq. 16. The simulation 
showed that cells with different Ec have much more influ-
ence on the mechanotaxis process than the Es value of 
the substrate. The Es and Ec values were selected based on 

Fig. 4 so that the velocities of the cells would be different. 
The choice of Es controls the rate of the cells’ movement, 
as the simulation suggests. Figures 7, 8 show the dynam-
ics of these situations in 2D simulations.

This behavior can be accounted for by looking at 
Eqs.  10 and 12; cells on the lower Es side (left side on 
Figs. 7, 8) have greater velocities than cells on the higher 
Es side; hence, there is a greater likelihood for these cells 
to migrate to the higher Es side. Furthermore, cells on the 
lower Es will have a higher maximal distance for MDS (d) 
than cells on higher Es, since these cells receive more sig-
nals from the other zone and will be drawn over.

Throughout the simulations, softer types of cells 
migrated towards the region crowded with stiffer type 
cells; i.e., high Ec. When comparing the same cells on dif-
ferent ESM, the cells appear to spread with a slight move-
ment towards the stiffer region; i.e., high Es. Figure  9 
shows this effect, and depicts the number of cells that 
migrated to (Fig. 9a) or from (Fig. 9b) an Ec = 0.5 kPa to 
another Ec zone.

One half consisted of cells with a constant Ec of 0.5 kPa, 
and the other half was made up of cells with Ec ranging 
from 0.1 to 1.1 kPa. The cells ‘preferred’ to drift towards 
the stiffer cell zone with little influence of substrate stiff-
ness. Note that the effectiveness of Es virtually vanishes 
when dealing with large Ec cells.

Metastasis
One of the most interesting situations that this simulation 
can reflect is metastasis, where a cell becomes malignant 
and reproduces faster until it extends to another region. 
In terms of mechanotaxis, cells with different amounts of 
stiffness migrate towards another ECM region.

To simulate this, we used a 3D simulation by creating 
two blocks of cells, and ran data mimicking the metasta-
sis process Figs. 10, 11 presents the results of 3D simula-
tions run as in “Two cells, two substrates” with different 
Es or Ec values. Figure 10 is for two ESM regions with the 
same Ec, and Fig. 11 is for different types of cells (different 
Ec) in the same ESM medium.

These runs served to compare the 3D simulation to the 
2D. Figure 12 shows the process of metastasis by a can-
cerous cell (red cells) proliferating uncontrollably and 
growing towards other region. The results show that the 
simulation in 3D behaved as expected, and was similar 
to the 2D simulations, with the exception of the amount 
of time it took for the migration to occur. This temporal 
difference can be explained by looking at the number of 
cells in a zone, and the extra degree of freedom a cell can 
move in, since the cells can attract a cell with a stronger 
force from more directions than in 2D. The main dif-
ference between Fig.  10a, b is the elasticity of the cells, 
in that the cells’ velocity in Fig.  10b is higher, which 
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Fig. 6  Two cells problem—the figures shows the distance between 
the centers of two cells as a function of time. a is for non-stochastic 
movement (Pmp = 0), and for several ESM elastic modulus values. 
As the elasticity of the substrate increases, cell velocity decreases; b 
shows how the movement changes with the addition of stochastic 
movement for different values of Pmp, and indicates that as the free 
movement takes over, the interaction weakens. Results are similar to 
Vermolan and Gefen [4]
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Fig. 7  2D simulation of cells on different Es and the same Ec. in a the left side (blue cells) with Es = 0.5 kPa, right side (red cells) with Es = 10 kPa. In b 
left side (blue cells) with Es = 3 kPa, right side (red cells) with Es = 7 kPa. Ec = 0.5 kPa. Cells on lower Es have greater velocities. It is hard to decide which 
side was more “attractive” to the cells as in both runs there was a slight migration in each kind of cell
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Fig. 8  2D simulation of cells on different Ec and same Es. a shows Es = 3 kPa, right-side (blue) cells are with Ec = 0.5 kPa, left-side (red) cells are with 
Ec = 1 kPa. In b, Es = 10 kPa, Ec of right-side (red) cells have Ec = 1 kPa, left-side (blue) cells have Ec = 0.5 kPa. Attraction towards the side of the lower 
Ec is seen in both simulations, displaying the strong effect of the cells’ elasticity on the migration process
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increases their likelihood of migrating towards the other 
type of cells. The magnitude of Ec over Es was consistent 
in 3D as well as in the 2D simulations.

Figure  12 shows the attraction of the tumor towards 
the upper tissue. Tweaking with the elasticity values can 
produce a full metastasis simulation. Note that both q 
(likelihood of proliferation) and p (likelihood of death) 
play a crucial role.

Cell death (black cells in the simulation) impacts the 
balance of the proliferation rate, and can potentially 
influence the migration direction.

Discussion
We presented a novel mechanotaxis model and simula-
tion results. Cell and substrate elastic moduli were shown 
to have a considerable influence on the way that cells are 
able to move (movement rate and direction) as well as on 
culture migration behavior, which can start with only one 
cell. To understand the parameters controlling mecha-
notaxis, several simulations were run in order to disen-
tangle these parameters. The data show that the ratio 
between the elastic modulus of the substrate and the cell, 
�, primarily influences the cells’ ability to migrate.

As shown in Eq. 10, the cell’s velocity is defined by � , 
and by selecting this correctly, we can manipulate cell 
movement on the basis of their elasticity, and culture 
them on a chosen substrate. � also affects the migration 
time, by making the length of the simulation time-step an 
important parameter. Another effect of � is the directiv-
ity of the migration. The results of the two elastic region 
simulations (“Two cells, two substrates”) show that 
stiffer cells produce a “louder” signal and softer cells will 
migrate towards them. A stiffer substrate will also influ-
ence cell movement, and cells will often tend to migrate 
towards the stiffer side of the substrate. An in  vitro 
experiment [6] motivated the original assumption.

The model incorporated stochastic behavior to make 
the simulation more realistic and enable spontaneous 
migration to take place. Without free movement, the cells 
would be encapsulated in one region without migration. 
Enabling stochastic movement lengthens the simulation 
time (Fig.  6), and the ratio between mechanotaxis and 
self-inflicted movement (Pmp) needs to be calibrated for 
the simulation to mimic reality. Running the simulation 
in 2D or 3D alters the length of the simulation as a result 
of the number of cells and the third degree of freedom of 
movement.

Proliferation and cell death can affect simulation dura-
tion and migration behavior, depending on their rates. 
As cells multiply more often, a cluster of cells can sepa-
rate from the main tissue and migrate towards a stiffer 
region, mimicking the metastasis process (Fig. 12). Here, 
we chose to manipulate the cells one cell at a time, in an 
attempt to simulate the connections between the cells, 
and the response of each cell to the signals it receives 

Fig. 9  The figures show the effect and magnitude of a cell’s own 
elastic modulus (Ec). In this simulation run, the substrate was divided 
into two halves: one with cells having Ec = 0.5 kPa and the other with 
changing Ec values. a shows the number of cells that migrated to 
the constant elastic modulus side. b shows the number of cells that 
migrated to the changing Ec side. All simulations were carried out for 
several Es values. The graphs show the impact of the Ec value, over Es
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Fig. 10  3D Simulation runs of cells within different Ec and identical Es. In a upper half (red) of Es = 0.5 kPa, lower half (blue) is Es = 10 kPa. Ec = 0.5 kPa. 
In b upper half (red) Es = 3 kPa, lower half (blue) Es = 7 kPa. And Ec = 1 kPa. Both simulations depict how the Es value primarily affects the velocity and 
spread of the cells over time, whereas the choice of Ec can have a greater effect on cell migration
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individually. Therefore the run-time of this simulation 
was dependent to a great extent on the number of cells 
(and hence on the proliferation and cell-death rate), and 
on the elastic modulus, through the threshold param-
eter ε. Running this simulation on a powerful computer, 
coding it in another language such as C or C++ or run-
ning the program in a parallel computational environ-
ment such as a GPU (Graphical Processing Unit) would 
considerably shorten the run-time and make it possi-
ble to investigate more complex situations and different 
parameters.

Conclusion
The model introduced here focused on cell mechanotaxis, 
to analyze the connection and influence between the 

cellular substrate, the extracellular matrix and cell stiff-
ness. Our goal was to assess collective effects and migra-
tion patterns of cell-to-cell “mechanical communication”.

The findings indicate that cells tend to migrate to stiffer 
regions. The rate of migration is dependent on cell elas-
ticity and the ability to move freely. These findings have 
implications for tissue growth, since the growth rate can 
be altered. We also showed that the model can simulate 
other biological processes such as tumor development 
and metastasis, where cell migration plays an important 
role. For instance, this could be applied to develop medi-
cation for faster wound healing or inhibiting migration to 
prevent metastasis from forming.

This framework can easily be extended to incorpo-
rate different types, sizes and shapes of cells, migration 

Fig. 11  3D Simulation run of cells with different Ec values within the medium with Es = 10 kPa. The upper half (red) cells have Ec = 1 kPa, and lower 
half (blue) cells have Ec = 0.5 kPa. Note that the spread of the cell is high due to the high velocity, and the clear-cut migration towards the cells with 
higher elasticity
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mechanisms such as chemotaxis, responses to obstacles, 
resource scavenging, etc., to investigate their affects on 
migration process.
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